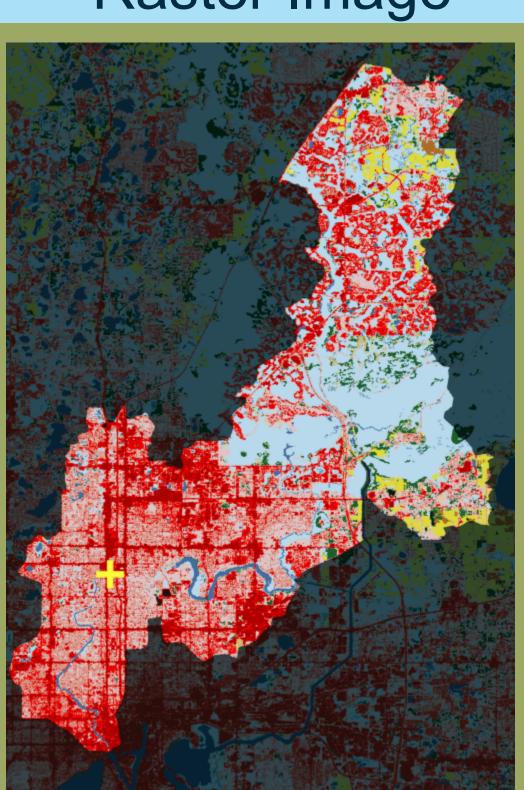


rivers in different states. Many of the open datasets only include pictures or descriptions of the location instead of actual geocoded points of the sample site.

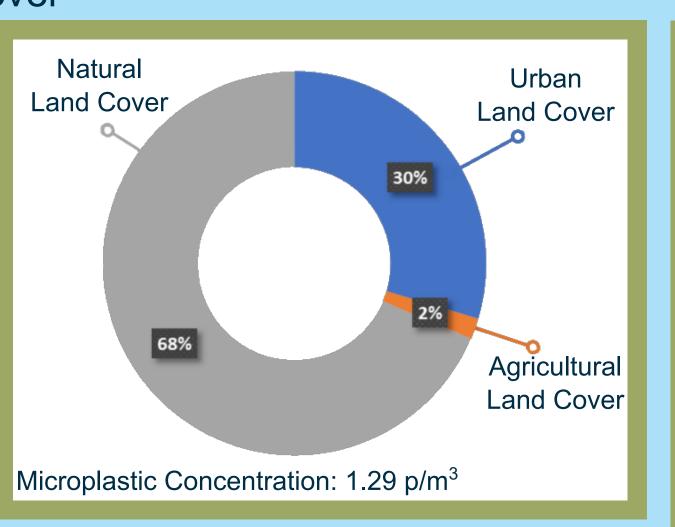

Microplastics are not a localized issue. It is global, and

Open source is the nurturer of collaboration. An open source better. The work can continue after we are no longer there.

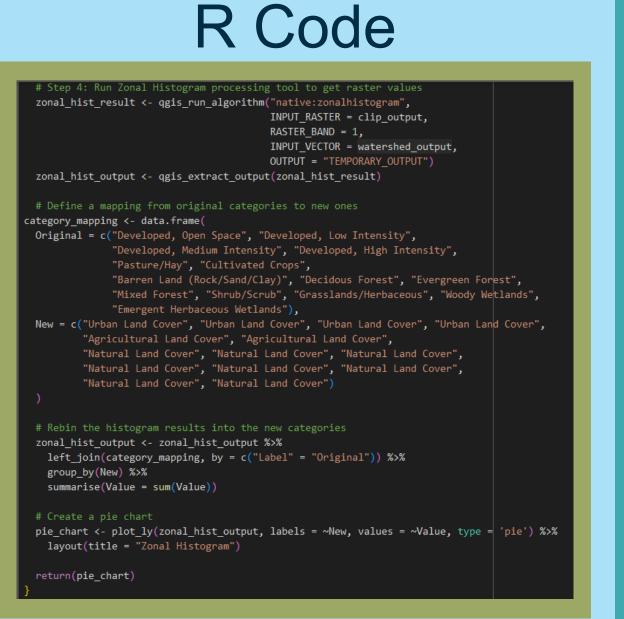
Raster Image

Pasture/Hay Natural Cultivated Crops Land Cover Urban Land Cover Developed Open Space Low Development Med. Development High Development **Natural Land Cover** Open Water

Deciduous Forest **Evergreen Forest Mixed Forest** Dwarf Scrub Shrub/Scrub Grassland/Herbaceou Sedge/Herbaceous Lichens Moss Woody Wetlands Emergent Herbaceous


Barren Land

A raster of the proportions of land use was made using National Land Cover Database (NLCD) from 2019 made by the USGS. The pixels in the raster were counted up to create a pie chart. This pie chart can be used in a microplastics vs land use study.


The NLCD package has many land uses, some only making up a few pixels of the raster. The land uses were combined into 3 groups for the pie chart. Agricultural land cover is the smallest group comprised of only pastures and cultivated crops. Urban land cover includes all developed areas, including open space like parks. Natural land cover is comprised of all natural environments.

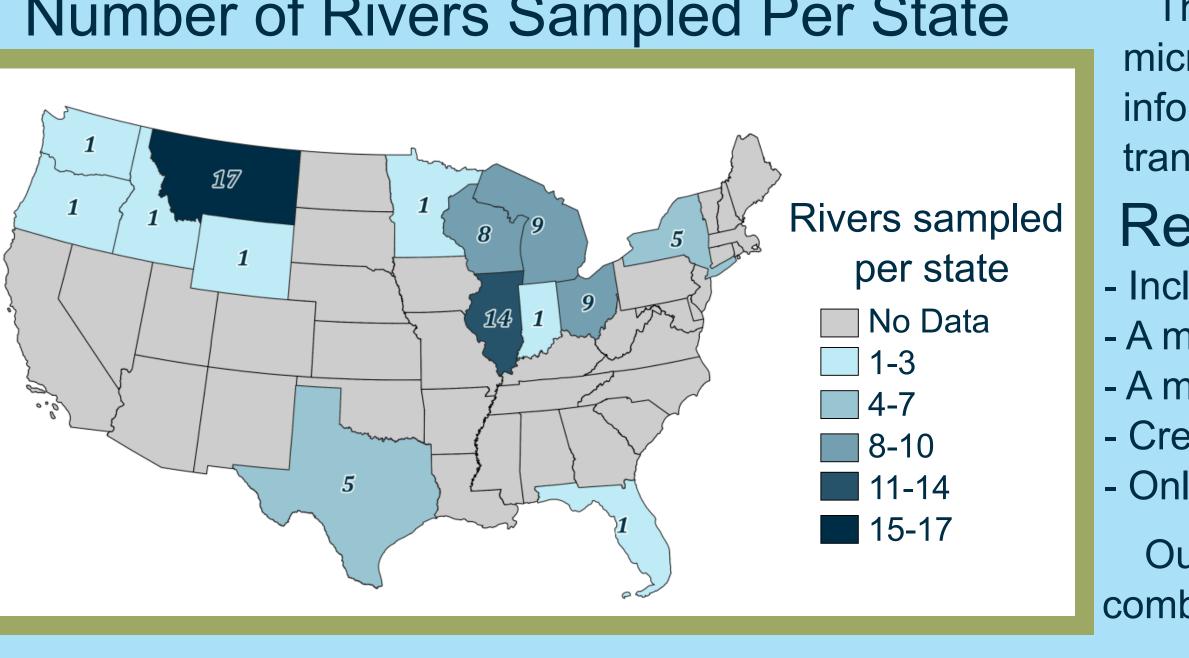
GIS Standardization of Microplastic Pollution Research Masters of Science in Geographic Information Science (MSGISci)

Department of Geography, California State University, Long Beach

Middle Hillsborough **River Watershed**

When a new NLCD dataset is released by the MRLC, the map and pie charts can be updated with this code. Eventually, with enough data, this can be used to examine if there is a correlation between microplastic concentration and land use. Code, instructions and recommendations were uploaded to GitHub for future microplastics researchers interested in GIS studies.

Data for 74 waterways in 14 US States was taken from 10 different manuscripts. Twenty-five papers were initially scraped. The decision was made to cut 15 of them due to either being incompatible or located outside the US. Across the remaining 10 manuscripts, there were 996 samples.


A study was deemed incompatible if the concentration was not measured in a particles per volume unit or if it included macroplastics. Columns were removed if they were incomplete in many studies or if information was not pertinent. Finally, remaining data was converted to particles per cubic meter if not already and averaged to represent each river only once per state.

> - How many had coordinates: - How many had maps:

Sample ID	DOI	Sample River	STATE	No. of Samples	Total Mean Conc	Units	Latitude
MPGISID1	doi.org/10.1021/acs.est.6b02917	Ashtabula River	OH	3	10.3	p/m3	41.904399
MPGISID2	doi.org/10.1016/j.watres.2018.10.013	Bacon Rind Tributary	MT	2	400	p/m3	44.929961
MPGISID3	doi.org/10.1016/j.watres.2018.10.013	Bear Creek Tributary	MT	2	900	p/m3	45.615627
MPGISID4	doi.org/10.1016/j.watres.2018.10.013	Big Sky Tributary	MT	4	550	p/m3	45.267266
MPGISID5	doi.org/10.1016/j.watres.2018.10.013	Black Butte Tributary	MT	6	467	p/m3	45.054072
MPGISID6	doi.org/10.1021/acs.est.6b02917	Black River	OH	3	1.2	p/m3	41.413951
MPGISID7	doi.org/10.3389/frans.2022.857694	Buena Vista Pond	TX	4	1225	p/m3	31.570041
MPGISID8	doi.org/10.1016/j.watres.2018.10.013	Buffalo Horn Creek	MT	6	617	p/m3	45.126678
MPGISID9	doi.org/10.1021/acs.est.6b02917	Buffalo River	NY	3	4.1	p/m3	42.875192
MPGISID10	doi.org/10.1021/acs.est.6b02917	Burns Ditch	IN	3	0.3	p/m3	41.642202
MPGISID11	doi.org/10.1021/acs.est.6b02917	Clinton River	MI	4	12.2	p/m3	42.596659
MPGISID12	doi.org/10.1021/acs.est.6b02917	Cuyahoga River	OH	3	2.6	p/m3	41.385661
MPGISID13	doi.org/10.1016/j.watres.2018.10.013	Deer Creek	MT	6	1067	p/m3	46.840344
MPGISID14	doi.org/10.1002/ecs2.1556	DuPage River	IL	8	8.1	p/m3	41.697565
MPGISID15	doi.org/10.1002/ecs2.1556	E Br DuPage River	IL	8	6	p/m3	41.742995
MPGISID16	doi.org/10.1016/j.scitotenv.2019.02.028	Fall Creek	NY	6	15833.33	p/m3	42.454679

Further Research

Studies generally focus on a single watershed. Sometimes this Visualizations and geospatial analyses were limited by is only one state or one river. That might not seem like much, but access to and quality of data in the papers scraped. Open together they can cover a larger area. This is why open data is so collaboration within the microplastics community can fill in important. With collaboration, a larger coverage of states will be the gaps encountered. Once there is more representation in North America, the focus can be shifted internationally. possible. Number of Rivers Sampled Per State The creation of standardized methods for collecting microplastics data as well as an open data portal makes information about microplastics more accessible and transparent to those who need it.

Acknowledgements

We would like to thank the members of the Moore Insititute for their help and support especially Dr. Win Cowger and Hannah Hapich

Holden Ford Haig Minasian Anja Oca

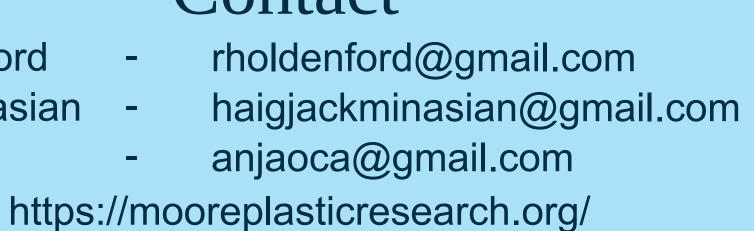
Holden Ford Haig Minasian Anja Oca

Data

Stats about studies scraped:

- Max with same concentrations unit:

Sample of the Finished Data Table


Recomendations:

- Include exact coordinates for all sample sites - A majority of concentration data is in particles per volume - A majority of those papers use particles per cubic meter - Create a unique identifier for all sites

- Only one value per site unless showing change over time

Our main takeaway from this project is that in order to combat this human health crisis we all must work together.

Contact

